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Finite-size effect in the Eguı´luz and Zimmermann model of herd formation
and information transmission
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The Eguı´luz and Zimmermann model of information transmission and herd formation in a financial market
is studied analytically. Starting from a formal description on the rate of change of the system from one partition
of agents in the system to another, a mean-field theory is systematically developed. The validity of the
mean-field theory is carefully studied against fluctuations. When the number of agentsN is sufficiently large
and the probability of making a transactiona!1/N ln N, finite-size effect is found to be significant. In this case,
the system has a large probability of becoming a single cluster containing all the agents. For small clusters of
agents, the cluster size distribution still obeys a power law but with a much reduced magnitude. The exponent
is found to be modified to the value of23 by the fluctuation effects from the value of25/2 in the mean-field
theory.
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I. INTRODUCTION

The model of herd formation and information transm
sion in a market introduced by Eguı´luz and Zimmermann@1#
~henceforth referred to as the EZ model! has received much
attention recently@2–4#. The model considers a populatio
of N agents. An agent can be connected to any of theN21
other agents. The connectivity has the following propert
If Agent A is connected to B, then B is connected to A.
Agent A is connected to B and Agent B is connected to
then A is connected to C. The connected agents form
cluster. In the beginning, all agents are not connected and
connectivity is established dynamically as follows. At ea
time step, an Agent A is selected at random. With a proba
ity a, the connections in the cluster containing A are brok
and all agents in this cluster become isolated agents. In
EZ model, a cluster of agents carry out the same action,
buy or sell, with probabilitya and the cluster dissolves afte
a transaction is made. With a probability 12a, another
Agent B is selected at random. If Agents A and B belong
two different clusters, then all the agents in the two clust
are connected together to form a bigger cluster. If Agent
and B happen to belong to the same cluster, no actio
carried out and the next time step begins. EZ studied
cluster size distribution in the long-time limit and found th
the number of clustersns of size s follows a power-lawns
;s25/2, with an exponential cutoff@1,2#. A price return can
be mapped out from the collective action of the cluster
agents, when the cluster decides to make a transaction.
price return distribution also follows a power law with
behavior similar to that observed in some real mark
@1,5,6#. The EZ model is a dynamical version of an earl
model of Cont and Bouchard@7# for herd formation in mar-
kets in which clusters are formed probabilistically with clu
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ter size also follows a power law of exponent25/2.
D’Hulst and Rodgers@2# developed a mean-field analys

for the EZ model and found an analytic expression for
size distribution of clusters of agents. Their analytic expr
sion is valid whenN is sufficiently large anda@1/AN. Un-
der these conditions, the state of the system correspondin
the entire population forming a single cluster is not impo
tant, and the finite-size effect is insignificant.

In the present paper, we study the EZ model analytica
Starting from a general description of the model through
rate of change of the system from one partition of agents
another, a mean-field theory can be developed systematic
The validity of the mean-field theory can be checked by c
sidering the effects of fluctuations. Finite-size effect turns
to be significant, especially in the limita!1/(N ln N). When
a!1/(N ln N), in the limit N→`, one would expect the stat
with a single cluster consisting of all the agents be domina
The probability for other states to occur is small and prop
tional toa. However, it is of interest to find out the values
these probabilities in the case ofa!1/(N ln N), as the results
will allow us to understand the finite-size effect in the inte
mediate regime ofa;1/(N ln N) in which the probability of
having the state of a single cluster consisting of all the age
is finite but less than unity.

The paper is organized as follows. In Sec. II, we pres
the exact equations for describing the dynamics of the s
tem. In the limit ofN→` anda@1/AN, we systematically
develop a mean-field approach and recover the equat
given by D’Hulst and Rodgers@2#. In Sec. III, we discuss the
finite-size effect in the limitN→` anda!1/(N ln N) within
the mean-field approximation. In Sec. IV, we present the
act solutions to the EZ model in the limit of largeN anda
!1/(N ln N). The validity of the mean-field solutions i
checked against the exact solutions. The exact solutions
found to be slightly different from the mean-field solution
indicating that fluctuation effect is significant. In Sec. V, w
present the numerical results for different values ofa. Re-
sults are summarized and discussed in Sec. VI.
©2002 The American Physical Society30-1
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II. EXACT EQUATIONS

The dynamics of the EZ model can be described by c
sidering the partition ofN agents@ l 1 ,l 2 , . . . ,l N#. Here,l s is
the number of clusters of sizes (s.0). It follows that
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Since any state of aN-agent system can be characterized
a partition@ l 1 , . . . ,l N#, the system can be described by t
probability function P@ l 1 , . . . ,l N#. The time evolution of
P@ l 1 , . . . ,l N# is governed by the dynamics for cluster com
bination and dissociation as follows@8#:
dP@ l 1 , . . . ,l N#

dt
52

12a

N~N21!F(i 51

N

il i i ~ l i21!1(
i , j

2i l i j l j GP@ l 1 , . . . ,l N#1
12a

N~N21! H (i 51

N

i ~ l i12!i ~ l i11!

3P@ l 1 , . . . ,l i12, . . . ,l 2i21, . . . ,l N#1(
i , j

2i ~ l i11! j ~ l j11!P@ l 1 , . . . ,l i11, . . . ,l j

11, . . . ,l i 1 j21, . . . ,l N#J 2
a

N H (
i 52

N

il i P@ l 1 , . . . ,l N#2 i ~ l i11!

3P@ l 12 i , . . . ,l i11, . . . ,l N#J . ~2!
-

The first four terms on the right-hand side of Eq.~2! describe
the combination of clusters. The first term describes
reduction inP@ l 1 , . . . ,l N# due to the change from the part
tion @ , . . . ,l i , . . . ,l 2i , . . . ,# to the partition @ , . . . ,l i
22, . . . ,l 2i11, . . . ,# when two different clusters of the
same sizei are combined to form a larger cluster of size 2i .
The factori l i i ( l i21)/N(N21) is the probability of select-
ing two agents belonging to two different clusters of sizei.
Similarly, the second term describes the change from
partition @ , . . . ,l i , . . . ,l j , . . . ,l i 1 j , . . . ,# to the partition
@ , . . . ,l i21, . . . ,l j21, . . . ,l i 1 j11, . . . ,# when a cluster of
size i combines with a cluster of sizej to form a cluster of
size i 1 j . The factor 2i l i j l j /N(N21) is the probability of
selecting an agent from a cluster of sizei and another from
a cluster of sizej. The third term describes the increa
in P@ l 1 , . . . ,l N# due to the change from the partitio
@ , . . . ,l i12, . . . ,l 2i21, . . . ,# to @ , . . . ,l i , . . . ,l 2i , . . . ,#.
Similarly, the fourth term describes the change from
partition @ , . . . ,l i11, . . . ,l j11, . . . ,l i 1 j21, . . . ,# to
@ , . . . ,l i , . . . ,l j , . . . ,l i 1 j , . . . ,#. The last two terms de
scribe the change inP@ l 1 , . . . ,l N# due to dissociations o
clusters. The fifth term describes the change from the pa
tion @ l 1 , . . . ,l i , . . . ,# to @ l 11 i , . . . ,l i21, . . . ,# when a
cluster of sizei dissolves. The factori l i /N is the probability
of selecting an agent from a cluster of sizei. The last term
describes the change from the partition@ l 12 i , . . . ,l i
11, . . . ,# to @ l 1 , . . . ,l i , . . . ,#. In this way, the dynamics in
the EZ model is described as a flow of the probability fun
tion in a phase space consisting of all the possible parti
of agents in aN-agent system.

Since d/dt(@ l 1 , . . . ,l N#P@ l 1 , . . . ,l N#50, a normalization
condition can be introduced as
e

e

e

ti-

-
n

(
[ l 1 , . . . ,l N]

P@ l 1 , . . . ,l N#51. ~3!

In the stationary state,

d

dt
P@ l 1 , . . . ,l N#50.

For small values ofN, P@ l 1 , . . . ,l N# may be obtained by
simply solving a set of algebraic equations. WhenN is large,
solving P@ l 1 , . . . ,l N# directly becomes increasingly diffi
cult. WhenN is large anda is not too small, Eq.~2! can be
greatly simplified and allows an exact solution.

It is useful to define the quantities

^ni&5 (
[ l 1 , . . . ,l N]

P@ l 1 , . . . ,l N# l i , ~4!

^ninj&5 (
[ l 1 , . . . ,l N]

P@ l 1 , . . . ,l N# l i l j , ~5!

and

^ninjnk&5 (
[ l 1 , . . . ,l N]

P@ l 1 , . . . ,l N# l i l j l k . ~6!

It follows from Eq. ~1! that:

(
i 51

N

i ^ni&5N, ~7!
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(
i 51

N

i ^ninj&5N^nj&, ~8!

(
i 51

N

i ^ninjnk&5N^njnk&. ~9!

A mean-field theory can then be systematically develop
When N is sufficiently large anda is not too small, i.e.,a
@1/AN, ^ns& is of the order ofN for finite s. Since ^ns&
decays rapidly withs, ^ns& for large values ofs plays little
role in the determination of̂ np& for small values ofp.
Therefore, if we are interested in extracting thes dependence
of ^ns& for small s, we may establish a mean-field approx
mation by decoupling

^ninj&'^ni&^nj&, ~10!

which is valid when fluctuations are small. ForN→` and
a@1/AN, the approximation of neglecting fluctuations c
be justified self consistently@9#.

Multiplying Eq. ~2! by l s and summing over all possibl
partitions@ l 1 , . . . ,l N#, an equation for]^ns&/]t is obtained.
Using Eqs.~7!–~9! together with the mean-field approxima
tion, one obtains fors>2

]^ns&
]t

52
~22a!s^ns&

N
1

~12a!

N2

3(
r 51

s21

r ^nr&~s2r !^Ns2r&, ~11!

and fors51

]^n1&
]t

52
2~12a!^n1&

N
1

a

N(
r 52

N

r 2^nr&

52
2~12a!^n1&

N
1

a

N (
r 52

`

r 2^nr&, ~12!

where we have used 1/(N21)'1/N. These equations fo
^ns& in the stationary state are identical to those analytica
solved by D’Hulst and Rodgers@2#. Here, we re-covered
these equations as an approximation to Eq.~2!, which is the
basic equation for the EZ model. The solution indicates t
^ns& is proportional toN and decays with a power law o
exponenta525/2, with an exponential cutoff showing u
for larges. The result also justifies the assumption that^ns&
of small s are mainly determined bŷnr& of small r. Notice
that an analytical extension has been made in the sec
equality in Eq.~12! which is valid only whenN@1 anda
@1/AN. In this case,̂ nr& for r;N is terminated by the
exponential cutoff.

III. LARGE N AND a™1Õ„N ln N… LIMIT: MEAN-FIELD
APPROXIMATION

For largeN anda!1/(N ln N), the state of the system i
which all agents combined to form a single cluster becom
04613
d.

y

t
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s

dominantly important. The probabilityP@0,0, . . . ,1# is al-
most equal to unity and the probabilities for the remaini
partitions to occur are small and proportional toa. We define

A5 (
[ l 1 , . . . ,l N]

8 P@ l 1 , . . . ,l N#, ~13!

where (8 denotes a summation over all possible partitio
except @0,0, . . . ,1#. Apparently,A;a. On the other hand
^ns&;a for s,N. We examine the size dependence of^ns&
for small s. Since the partition@0,0, . . . ,1# can only be bro-
ken into the partition@N,0, . . . ,0# in the dissociation of the
largest possible cluster, one may expect that^ns&/A@1 for
small s. In other words, the average numberl s of clusters of
size s for small s in important partitions@ l 1 , . . . ,l N# other
than@0,0, . . . ,1# is large. Therefore, the mean-field approx
mation may give a reasonable description of the behavio
^ns& for small s. SinceA!1, the mean-field approximation
now becomes

^ninj&'^ni&^nj&/A ~14!

for small i and j. Furthermore, one has

(
s51

N21

s^ns&5AN ~15!

and

(
s51

N21

s^nins&5N^ni&. ~16!

Following similar procedures as in getting Eqs.~11! and
~12!, one obtains

]^ns&
]t

5
1

N2A (
r 51

s21

r ~s2r !^nr&^ns2r&2
2s^ns&

N
~17!

for s>2, where terms proportional toa2 are neglected.
Equation~17! may be analytically extended tos5` because
^ns& is very small for larges excepts5N. The equation for
^n1& is slightly different. The dissociation of@0,0, . . . ,1# is
the dominant source of cluster of a single agent, and thu
crucial in the determination of̂n1&. All other contributions
to ^n1& are negligible in the limit ofa→0. Thus,

]^n1&
]t

5aN2
2^n1&

N
. ~18!

Stationary solution to Eqs.~17!–~18! can be found by the
generating function approach@2#. Defining the generating
function

g~v!5(
s52

`

s^ns&e
2vs, ~19!

it is straightforward to obtain from Eq.~17! that
0-3
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g~v!5
1

2NA
@^n1&e

2v1g~v!#2. ~20!

It also follows from Eq.~18! that in the stationary state

^n1&5
N2a

2
. ~21!

Sinceg(0)5NA2^n1& andg(0)5NA/2 from Eq.~20!, we
have

A5Na. ~22!

Substituting Eq.~22! into Eq. ~20!, one finds that

g~v!5
N2a

2
~12A12e2v!2, ~23!

and consequently

^ns&5N2a
~2s22!!

22s21s! 2
. ~24!

For values ofs that the Stirling’s formula holds, the abov
equation gives

^ns&'N2as25/2. ~25!

Comparing with the results in Ref.@2#, we found that when
a!1/(N ln N), ^ns& still follows a power law with the expo-
nent25/2, but the coefficient in front is changed fromN to
N2a!N. Therefore, the system almost becomes a sin
cluster consisting of all agents whena!1/(N ln N). The
probability in any other states is very small and is prop
tional to a. It may be interesting to note that the situation
analogous to that in Bose-Einstein condensation, in wh
the macroscopically occupied ground state correspond
the situation of̂ nN&512A'1 in the present problem.

IV. LARGE N AND a™1Õ„N ln N… LIMIT:
EXACT SOLUTION

WhenN is finite anda is small, one may obtain the solu
tion for ^ns& for small s directly from Eq.~2!. For instance,

^n1&5
N2a

2
, ~26!

^n2&5
~N21!2N2a

8~N22!~2N23!
, ~27!

and

^n3&5
~N21!2N2a

18~N23!~3N27!
. ~28!

We found that for̂ n1&, the result is the same as the me
field result @Eq. ~24!#. For ^n2& and ^n3&, the mean-field
results are different from Eqs.~27! and~28!. The discrepancy
suggests that for finiteN, fluctuations may become signifi
04613
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cant. Interestingly asN→`, Eqs.~26!–~28! reduce to^n1&
→N2a/2, ^n2&→N2a/16, and^n3&→N2a/54. These results
are the same as the mean-field results for^n1& and^n2&, but
not for ^n3&. Therefore, the effects of fluctuations are impo
tant even whenN→` in the case ofa!1/(N ln N). In this
case, the solutions to a set of hierarchical quantities^ni&,
^ninj&, ^ninjnk&, etc., are needed in order to obtain an ex
solution. To do so, we define

^n1
m1
•••ni

mi
•••&5 (

l 1 , . . . ,l N
P@ l 1 , . . . ,l N# l 1

m1
••• l i

mi , . . . ,

~29!

and we have

(
i 51

N

i ^n1
m1
•••ni

mi11
•••&5N^n1

m1
•••ni

mi
•••&. ~30!

We consider the quantitieŝn1
m1
•••ni

mi
•••& with

MN5(
i 51

N

imi!N.

If we define

^n1
m1
•••ni

mi
•••&5 lim

N→`

lim
a→0

^n1
m1
•••ni

mi
•••&

NM11a
,

then forN→` anda!1/(N ln N), it can be shown that

^n1
m1
•••ni

mi
•••&5NM11a^n1

m1
•••ni

mi
•••&1O~NMa!,

~31!

whereM5( i 51
N mi and^n1

m1
•••ni

mi
•••& is independent ofN

and a. Multiplying Eq. ~2! by l 1
m1
••• l i

mi
••• and summing

over all possible partitions@ l 1 , . . . ,l N#, one obtains

2MN^n1
m1
•••ni

mi
•••&

5(
s52

N

ms(
r 51

s21

r ~s2r !

3^n1
m1
•••nr

mr11
•••ns2r

ms2r11
•••ns

ms21
•••&

1d~m2!•••d~mN!, ~32!

where we have neglected the higher order terms in Eq.~31!
and usedMN!N and 1/(N21)'1/N. Eq. ~32! can be
solved readily whenMN is not large to get

^n1
m1
•••ni

mi
•••&5

~MN2M !!

~2MN!MN2M11)i 51

N S Ci

~ i 21!! D
mi

,

~33!

whereCi54(2i ) i 23. Hence, for smalls we have

^ns&5
N2a

2s3 1O~Na!. ~34!
0-4
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Thus, for smalls, ^ns& obeys a power law with an expone
23, a result different from the mean-field treatment. T
coefficient in front of thes23 behavior is still given by the
coefficientN2a.

Term of orderO(Na) neglected in Eq.~34! is unimpor-
tant for smalls, but it may become significant whens be-
comes larger. The following consideration serves to illustr
the point. Neglecting the termO(Na), one obtains

A5
1

N (
s51

N21

s^ns&5
p2

12
Na,Na.

On the other hand, Eq.~33!, in the limit N→` and a
!1/(N ln N), gives

^n1
s&5

Ns11a

2s
.

From the Schwartz inequalityA^n1
2&.^n1&

2, one has

A.Na.

Therefore, the neglected terms in Eq.~34!, although not im-
portant for smalls, become significant for larges and give an
additional contribution toA. We would also like to point out
that results of numerical simulation suggest thatA
;CNa ln N with C;0.5. The mean-field result ofA5Na is
therefore inconsistent with numerical results. Therefore,
merical results suggest that the neglected term in Eq.~34!
becomes important whens is large.

FIG. 1. The number of clustersn(s) with sizes as a function of
the cluster sizes for different values ofa in a system withN
5100. The data are obtained by averaging over ten runs with e
run corresponding to a different initial configuration lasting for 17

time steps. The solid lines give the analytical result ofns

5N2a/2s3 @Eq. ~34!#, for a51023 anda51024.
04613
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V. NUMERICAL SIMULATIONS

We carried out numerical simulations on the model
N5100 with different values ofa corresponding to differen
regimes. A total number of 107 time steps were used in eac
run. Figure 1 shows the results of^ns& as a function ofs for
a50.3, 0.1, 0.04, 0.03, 0.02, 0.01, 331023, 1023, and
1024, respectively. The data are obtained by averaging o
ten runs, with each run corresponding to a different init
configuration.

When a51023 and 1024, ^ns& decays as a power law
with the exponent23 for small s. However, thes depen-
dence of^ns& deviates from a power law for larges. In
particular, whens.40, ^ns& increases withs . This result
indicates that the neglected term in Eq.~34! is important
whens is large. Notice that there is a jump between^nN21&
and ^nN& for a51024. This can be understood by recallin
that asa→0, ^nN&→1 but ^nN21&;a. The jump is not ap-
parent for a51023 because the value is not sufficient
small. Hence, the results for smalla (a51023,1024) in Fig.
1 are consistent with the exact results presented in Sec
but inconsistent with the mean-field result in Sec. III. T
behavior of the neglected term in Eq.~34! for larges is worth
further investigation.

Some quantitative features of the numerical results
also worth pointing out. Recall thatA512P@0,0, . . . ,1#
512^nN&. ForN5100, we get̂ nN&50.78 fora51023 and
^nN&50.975 fora51024. Therefore,A;2Na for N5100.
This result is inconsistent with the mean-field theory, whi
predictsA5Na. SinceA;a as a→0, we also carried out
numerical simulations forN510, 31, 100, 310, and1000
so as to investigate theN dependence ofA. Extrapolation of
our numerical results indicates thatA'0.5N ln Na. There-
fore, only when a!1/(N ln N), we have A!1 and
P@0,0, . . . ,1#'1 so that the discussions in Secs. III and
are valid. Also, the numerical resultŝn1&50.494, ^n2&
50.062, ^n3&50.019 forN5100 anda51024 are in good
agreement with the exact results^n1&5N2a/251/2, ^n2&
51/16, and^n3&51/54. Fora51023, the numerical results
of ^n1&54.594 is slightly off the exact result of̂n1&
5N2a/255. This indicates thata51023 is not sufficiently
small for the case ofN5100, and it should better be treate
as a case in the crossover regime.

For comparison, Fig. 1 also includes results for values
a in the intermediate regime of 1/(N ln N),a,1/AN. It can
be seen that thes dependence of̂ns& in the intermediate
regime (a50.04, 0.03, 0.02, and 0.01! is rather complicated.
The transition from a ‘‘subcritical’’ behavior characterized b
a power law with an exponential cutoff to a ‘‘supercritica
behavior characterized by a power law with a bump seem
be gradual. If one is to locate a critical valueac at which the
competition between the two regimes balances,ac would lie
in the range 0.02,ac,0.03 for the system studied. Fora
50.02, the numerical results basically follow the ‘‘supercri
cal’’ behavior. Fora50.03, ^ns& follows a power law for
small s and starts to show ‘‘supercritical’’ behavior for 4
,s,80 but eventually goes over to the ‘‘subcritical’’ beha
ior for s.80. Note that the results fora50.3 are typical for
cases witha.1/AN.

ch
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VI. DISCUSSIONS

We have shown that finite-size effect is significant fora
!1/(N ln N) in the EZ model. In this case, the system alm
becomes a single cluster containing all the agents. On
other hand, finite-size effect is not important whenN is suf-
ficiently large anda@1/AN. In this case, all̂ ns& with s
being the order ofN are negligibly small. Therefore,^ns& for
finite and smalls is mainly determined bŷnr& for finite r.

The finite-size effect plays an important role in the det
mination of ^ns& for finite s in the limit of a!1/(N ln N).
Although^ns& decays as a power law withs both in the cases
of a!1/(N ln N) anda@1/AN ~in addition to an exponentia
cutoff! within a mean field approach, the coefficients in fro
of the s25/2 behavior are different. Fora@1/AN, the coeffi-
cient is N. For a!1/(N ln N), the coefficient becomesN2a,
which is much less thanN.

We also studied the validity of the mean-field approxim
tion. It is possible, in a self-consistent way, to show that@9#
the mean-field approximation is valid in the case ofN→`
anda@1/AN. However, fluctuation effects are important f
a!1/(N ln N). The direct consequence of the fluctuation
fects is to change the exponent of^ns& from 25/2 in the
mean-field approximation to23 for smalls.

It is interesting to discuss the intermediate regime
which 1/(N ln N),a,1/AN. When a@1/AN, ^ns& with s
;N are negligibly small because of the exponential cuto
The analytic theory developed by D’Hulst and Rodgers@2# is
valid. Whena,1/AN, the exponential cutoff in̂ ns& does
not terminate^ns& when s;N. In other words, thosênr&
with r;N also play an important role in the determination
^ns& for small s. Mathematically speaking, the second te
on the right-hand side of Eq.~12! should be replaced by
(a/N)( r 52

N r 2^nr&. Consequently,̂n1& is less than the resul
N/2 obtained in Ref.@2#. As a decreases further, the finite
.
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size effect becomes significant. Whena;1/(N ln N), the
probability P@0,0, . . . ,1#512A becomes finite and the
probabilities in other partitions are small and proportional
a. Finally whena!1/(N ln N), P@0,0, . . . ,1#512A'1 and
the theory presented in Sec. IV is valid. In the intermedi
regime of 1/(N ln N),a,1/AN, numerical results showed
that thes dependence of̂ns& is rather complicated. Furthe
work is needed to study the detail behavior of the transit
between a ‘‘subcritical’’ behavior characterized by a pow
law with an exponential cutoff to a ‘‘supercritical’’ behavio
characterized by a power law with a bump.

Finally, the importance of the neglected term in the ex
result@Eq. ~34!# was studied. Whens is small andN is large,
the neglected term is negligible and^ns& is exactly described
by a power law with the exponent23 whena→0. However,
numerical simulations indicate that whilêns&;s23 for
smalls, ^ns& increases withs whens;N. This result implies
that the neglected term becomes dominantly important w
s;N. The behavior in this regime deserves further inves
gations.
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