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The Eguiuz and Zimmermann model of information transmission and herd formation in a financial market
is studied analytically. Starting from a formal description on the rate of change of the system from one partition
of agents in the system to another, a mean-field theory is systematically developed. The validity of the
mean-field theory is carefully studied against fluctuations. When the number of &genwifficiently large
and the probability of making a transactiare 1/N In N, finite-size effect is found to be significant. In this case,
the system has a large probability of becoming a single cluster containing all the agents. For small clusters of
agents, the cluster size distribution still obeys a power law but with a much reduced magnitude. The exponent
is found to be modified to the value ef3 by the fluctuation effects from the value ©f5/2 in the mean-field
theory.
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I. INTRODUCTION ter size also follows a power law of exponent/2.
D’Hulst and Rodger$2] developed a mean-field analysis
The model of herd formation and information transmis-for the EZ model and found an analytic expression for the
sion in a market introduced by Eduz and Zimmermanfl]  size distribution of clusters of agents. Their analytic expres-
(henceforth referred to as the EZ modids received much  sjon is valid wherN is sufficiently large ands1/y/N. Un-
attention recentlyf2—4]. The model considers a population der these conditions, the state of the system corresponding to
of N agents. An agent can be connected to any ofNhel  the entire population forming a single cluster is not impor-
other agents. The connectivity has the following propertiestant, and the finite-size effect is insignificant.
If Agent A is connected to B, then B is connected to A. If  In the present paper, we study the EZ model analytically.
Agent A is connected to B and Agent B is connected to CStarting from a general description of the model through the
then A is connected to C. The connected agents form ongate of change of the system from one partition of agents into
cluster. In the beginning, all agents are not connected and thenother, a mean-field theory can be developed systematically.
connectivity is established dynamically as follows. At eachThe validity of the mean-field theory can be checked by con-
time step, an Agent A is selected at random. With a probabilsidering the effects of fluctuations. Finite-size effect turns out
ity a, the connections in the cluster containing A are brokeno be significant, especially in the limgi< 1/(N In N). When
and all agents in this cluster become isolated agents. In th&<1/(N InN), in the limit N— o, one would expect the state
EZ model, a cluster of agents carry out the same action, i.ewith a single cluster consisting of all the agents be dominant.
buy or sell, with probabilitya and the cluster dissolves after The probability for other states to occur is small and propor-
a transaction is made. With a probability—h, another tional toa. However, it is of interest to find out the values of
Agent B is selected at random. If Agents A and B belong tothese probabilities in the case @& 1/(N In N), as the results
two different clusters, then all the agents in the two clustersill allow us to understand the finite-size effect in the inter-
are connected together to form a bigger cluster. If Agents Anediate regime o&~ 1/(N In N) in which the probability of
and B happen to belong to the same cluster, no action ibaving the state of a single cluster consisting of all the agents
carried out and the next time step begins. EZ studied thés finite but less than unity.
cluster size distribution in the long-time limit and found that  The paper is organized as follows. In Sec. Il, we present
the number of clusterag of sizes follows a power-lawng  the exact equations for describing the dynamics of the sys-
~s~52 with an exponential cutoff1,2]. A price return can tem. In the limit ofN—o andas1/\/N, we systematically
be mapped out from the collective action of the cluster ofdevelop a mean-field approach and recover the equations
agents, when the cluster decides to make a transaction. Thygven by D’Hulst and Rodgef®]. In Sec. Ill, we discuss the
price return distribution also follows a power law with a finite-size effect in the limitN—c anda<1/(N In N) within
behavior similar to that observed in some real marketgshe mean-field approximation. In Sec. IV, we present the ex-
[1,5,6]. The EZ model is a dynamical version of an earlier act solutions to the EZ model in the limit of larg¢anda
model of Cont and Bouchaid] for herd formation in mar- <1/(NInN). The validity of the mean-field solutions is
kets in which clusters are formed probabilistically with clus- checked against the exact solutions. The exact solutions are
found to be slightly different from the mean-field solutions,
indicating that fluctuation effect is significant. In Sec. V, we
*To whom the correspondence should be addressed. (Bax:  present the numerical results for different valuesaoRe-
(551)-3603574; Email address: bhwang@ustc.edu.cn sults are summarized and discussed in Sec. VI.
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Il EXACT EQUATIONS Since any state of A-agent system can be characterized by
a partition[l,, ... ly], the system can be described by the
probability functionP[l, ... ly]. The time evolution of
P[4, ... In] is governed by the dynamics for cluster com-
bination and dissociation as follow8]:

The dynamics of the EZ model can be described by con
sidering the partition oN agentq14,l,, ... |y]. Here,lgis
the number of clusters of size(s>0). It follows that

N
> il;=N. (1)
i=1
dP[ly, ... ] 1-a [& . 1-a (& _
n =- N(N_l)[; ||i|(|i—1)+i§<}j 2ilj1;|P[ly, ... ,|N]+m 2}1 i(1,+2)i(l,+1)
XP[ly, ... i +2,...]5—1,... ,IN]+Z,J_ 2i(Li+D)j+ )Py, .o i +1, 0
N
a . .
+1,00 =1 ,|N]} _N[Zz iliP[ly, ... In]—i(l;+1)
><P[I1—i,...,Ii+1,...,IN]}. 2
|
The first four terms on the right-hand side of E2). describe
the combination of clusters. The first term describes the > Pl ... I\=1. 3
reduction inP[l, ... |y\] due to the change from the parti- (oo Ind
tion [,...li,...ly,...,] to the partition [, ... .
—2,...15+1,...,] when two different clusters of the In the stationary state,
same size are combined to form a larger cluster of sizie 2 d
The factoril ;i(I;—1)/N(N—1) is the probability of select- —P[l, ... Iy]=0.
ing two agents belonging to two different clusters of size dt
Similarly, the second term describes the change from the .
partition [, ... li, ... lj, ... lisj, ...,] to the partition For small values oN, P[l,, ... .Iy] may be obtained by
[ ... hi=1,...0;=1,... Jisj+1,... ] when a cluster of simply solving a set of algebraic equations. Wirs large,
sizei combines with a cluster of sizeto form a cluster of ~solving P[ly, ... Iy] directly becomes increasingly diffi-

sizei+j. The factor 2I;jl;/N(N—1) is the probability of ~cult. WhenN is large anda is not too small, Eq(2) can be
selecting an agent from a cluster of sizand another from greatly simplified and allows an exact solution.
a cluster of sizej. The third term describes the increase It is useful to define the quantities
in P[lq, ... ly] due to the change from the partition
N I S YR IR S o T [ P PR

[Similarlly, the fouz}th term ]descr[ibes thle chanZQI]e fror]n the <ni>:[| 2 Pl Il )
partiion [,...li+1,...);+1, ... ),;—1,...] to !
[ooodivoodj oo ligg, - .. ,]. The last two terms de-
scribe the change i®[l4, ... Iy] due to dissociations of (nin)= 2 Py, Il 5)
clusters. The fifth term describes the change from the parti- (1 Inl
tion [lq, ..., ...,] to [l4+i,...,—=1,...,] when a
cluster of sizd dissolves. The factat; /N is the probability
of selecting an agent from a cluster of sizélhe last term
describes the change from the partitigh,—i, ... |[; (ninjng) = 2 Py, .. Il (6)
+1,...]to[l4, ... I, ....]. Inthis way, the dynamics in [N
the EZ model is described as a flow of the probability func-
tion in a phase space consisting of all the possible partitiont follows from Eq. (1) that:
of agents in aN-agent system. N

Sth:e d/th“l,_,__JN]P[Il, ...,In]=0, a normalization D i(n)=N, )
condition can be introduced as i=1

and
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N dominantly important. The probability?[0,0, ... ,] is al-
E i(nin;)=N(n;), (8)  most equal to unity and the probabilities for the remaining
=1 partitions to occur are small and proportionabtdNVe define

N

inl.i<ninjnk>=N<njnk>' (9) A:[l 2,I 1 P[|11 "'1|N]1 (13)

- IEREE] N

A mean-field theory can then be systematically developedyhere s’ denotes a summation over all possible partitions
When N is sufficiently large and is not too small, i.e.a except[0,0, ... ,1. Apparently, A~a. On the other hand,
>1/\N, (ny) is of the order ofN for finite s. Since(ns)  (n.)~a for s<N. We examine the size dependence(if)
decays rapidly witts, (n;) for large values of plays little  for smalls. Since the partitiori0,0, . . . ,1 can only be bro-
role in the determination ofny) for small values ofp.  ken into the partitioriN,0, . . ., in the dissociation of the
Therefore, if we are interested in eXtraCtIng ﬁ’tdependence |argest possib|e cluster, one may expect Kha.»D/A>1 for
of (ng) for small's, we may establish a mean-field approxi- smalls. In other words, the average numbigof clusters of

mation by decoupling size s for small s in important partitiong |1, . .. ,Iy] other
. than[0,0, .. .,] is large. Therefore, the mean-field approxi-
(ning)~{mi){n;), 10 mation may give a reasonable description of the behavior of

(ng) for smalls. SinceA<1, the mean-field approximation

which is valid when fluctuations are small. FNr—o and
now becomes

a>1/\/N, the approximation of neglecting fluctuations can

be justified self consistentl}9]. Al
Multiplying Eq. (2) by I and summing over all possible (min)=~(m)(n;)/A (14)
partitions[1,, ... Iy], an equation fos(ng)/at is obtained. - -
Using Eqgs.(7)—(9) together with the mean-field approxima- for smalli andj. Furthermore, one has
tion, one obtains fos=2 N-1
s(ng)=AN 15
any)  (2-a)s(ng) (1-a) 521 (ns 19
a N - ON?
and
s—1
X 2 1(n)(s=1){(Ng_p), (11) N1
3, sinin)=N(n,). (16
and fors=1
N Following similar procedures as in getting Eq41) and
a(nq) 2(1-a)(ny) a ) (12), one obtains
== + _E r <nr>
at N Ni=2 s—1
Hng 1 2s(ng)
2(1-a)(n;) a < a—ts=m21 r(s=r(n)(Ns-r) = — = an

=T N A, (2

=
for s=2, where terms proportional ta? are neglected.

where we have used N(-1)~1/N. These equations for Equation(17) may be analytically extended = because

(ng) in the stationary state are identical to those analytically<ns> is very small for larges excepts=N. The equation for

solved by D'Hulst and Rodgerg2]. Here, we re-covered (n.) is slightly different. The dissociation ¢0,0, . ..,1 is

these equations as an approximation to &. which is the  the dominant source of cluster of a single agent, and thus is

basic equation for the EZ model. The solution indicates thagrycial in the determination ofn,). All other contributions

(ng) is proportional toN and decays with a power law of tq (n,) are negligible in the limit o&—0. Thus,

exponente= —5/2, with an exponential cutoff showing up

for larges. The result also justifies the assumption ttrag) a(ny) 2(n,)

of small's are mainly determined b§n,) of smallr. Notice g ANTTN T

that an analytical extension has been made in the second

equality in Eqg.(12) which is valid only whenN>1 anda Stationary solution to Eqg17)—(18) can be found by the

> 1/\/N. In this case(n,) for r~N is terminated by the generating function approadi2]. Defining the generating
exponential cutoff. function

(18

Ill. LARGE N AND a<1/(N In N) LIMIT: MEAN-FIELD *

APPROXIMATION g(w)= 22 s(ng)e” s, (19
&

For largeN anda<1/(N In N), the state of the system in
which all agents combined to form a single cluster becomed is straightforward to obtain from Eq17) that
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1
9(0)= 5yl (M)e " +g(w) 12 (20

It also follows from Eq.(18) that in the stationary state

_ N?a o1
(nl)— T ( )
Sinceg(0)=NA-(n;) andg(0)=NA/2 from Eq.(20), we
have

A=Na. (22
Substituting Eq(22) into Eqg. (20), one finds that
N2a —,
9(w)=—-(1-vi-e ), (23
and consequently
(2s—2)!
(ng)= Nza—225—15! > (24)

For values ofs that the Stirling’s formula holds, the above

equation gives

(ng)~N2as %2 (25)

Comparing with the results in Reff2], we found that when
a<<1/(NInN), (ng) still follows a power law with the expo-

nent —5/2, but the coefficient in front is changed frdwto

N2a<N. Therefore, the system almost becomes a single

cluster consisting of all agents whem<1/(NInN). The

PHYSICAL REVIEW E 65 046130

cant. Interestingly adl— o, Eqgs.(26)—(28) reduce to{n,)

—N?a/2, (n,)—N?a/16, and(ns)—N?a/54. These results
are the same as the mean-field results(fa)) and(n,), but

not for (ns). Therefore, the effects of fluctuations are impor-
tant even wherN—« in the case oa<<1/(NInN). In this
case, the solutions to a set of hierarchical quantiies,
(nin;), (ninjny), etc., are needed in order to obtain an exact
solution. To do so, we define

<n1ml-.-ni”‘i--->=Il > ) Plly, -l
(29
and we have
N
> i(n"- .nimi“. =N MY (30)

i=1

We consider the quantitiggy - - -n"- - -) with

N
My= >, im;<N.
=1
If we define
m mi
<n11. . .ni .. >

my mj T .
(n;t--n - y=lim lim
1 )
: N—w a—0 NM+la

then forN—oo anda<1/(N InN), it can be shown that

<nT1. . .nimi. . .>:NM+1a<nT1. . .nimi. . .>+O(NMa),
(31)

probability in any other states is very small and is propor-
tional toa. It may be interesting to note that the situation is\herem = =N m; and(nml. oM. - is independent oR
i= 1 i

analogous to that in Bose-Einstein condensation, in whic
the macroscopically occupied ground state corresponds

the situation of ny)=1—A~1 in the present problem.

IV. LARGE N AND a<1/(N In N) LIMIT:
EXACT SOLUTION

WhenN is finite anda is small, one may obtain the solu-

tion for (ng) for small s directly from Eq.(2). For instance,

N2a
<”1>=7, (26)
~ (N—1)°N%a
(n2)= g N=2)2n=3)" 27)
and
_ (N-1)°N%a
(N3)= TgN=3)(3N=7)" 8

t%nd a. Multiplying Eq. (2) by 17%: -1

1. and summing

over all possible partitionfl 1, ... Iy], one obtains

2MN<n1m1. . .nimi. . >

s—1

N
=> my>, r(s—r)
s=2 r=1

m+l .nmS*f+1. . .nmsil. . >

my
><<n1 SNy s—r s

+6(my) - - - 6(my), (32

where we have neglected the higher order terms in(&t).
and usedMy<N and 1/N—1)~1/N. Eqg. (32 can be
solved readily wherM  is not large to get

We found that for(n;), the result is the same as the meanwhereC;=4(2i)'"3. Hence, for smals we have

field result[Eqg. (24)]. For (n,) and (n3), the mean-field
results are different from Eq&7) and(28). The discrepancy
suggests that for finitd, fluctuations may become signifi-

o . (My—M)! : G \"
(ng*e--n; "'>_(2MN)MN—M+1i1_[1((i_l)!) ,
(33
N2a
(ng)= 55 +O(Na). (34
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10° gy —— N — V. NUMERICAL SIMULATIONS

s . We carried out numerical simulations on the model for
: ] N =100 with different values o& corresponding to different
regimes. A total number of TGime steps were used in each
run. Figure 1 shows the results @fs) as a function of for
a=0.3, 0.1, 0.04, 0.03, 0.02, 0.01,x20°3, 103, and
10" %, respectively. The data are obtained by averaging over
ten runs, with each run corresponding to a different initial
configuration.

Whena=102 and 10*, (n) decays as a power law
with the exponent-3 for smalls. However, thes depen-
dence of(ng) deviates from a power law for large In
particular, whens>40, (ng) increases withs . This result
indicates that the neglected term in E&4) is important
whensis large. Notice that there is a jump between,_ 1)
and(ny) for a=10"“. This can be understood by recalling

10°

100

a=0.03
F =0.02 I ) X
“ a0 3 that asa—0, (ny)—1 but(ny_;)~a. The jump is not ap-

o e 4 4 X
L]

a=1x10* .3

g 3 parent fora=10 3 because the value is not sufficiently
10° 1' " '1'0 — ';(')0 small. Hence, the results for smal(a=10"210 %) in Fig.
1 are consistent with the exact results presented in Sec. IV,
s but inconsistent with the mean-field result in Sec. Ill. The
FIG. 1. The number of clusterys) with sizes as a function of ~Pehavior of the neglected term in EG4) for largesis worth
the cluster sizes for different values ofa in a system withN  further investigation.
=100. The data are obtained by averaging over ten runs with each Some quantitative features of the numerical results are

run corresponding to a different initial configuration lasting fof 10 also worth pointing out. Recall thaA=1—-P[0,0,...,]
time steps. The solid lines give the analytical result mf  =21—(ny). ForN=100, we getny)=0.78 fora=10 2 and
=N?a/2s® [Eq. (34)], for a=10"% anda=10"*. (ny)=0.975 fora=10"“. Therefore, A~2Na for N=100.

This result is inconsistent with the mean-field theory, which
Thus, for smalls, {ng) obeys a power law with an exponent predictsA=Na. SinceA~a asa—0, we also carried out
—3, a result different from the mean-field treatment. Thenumerical simulations foN=10, 31, 100, 310, and000
coefficient in front of thes™2 behavior is still given by the so as to investigate the dependence oA. Extrapolation of

coefficientN2a. our numerical results indicates thaAt0.9NInNa. There-
Term of orderO(Na) neglected in Eq(34) is unimpor-  fore, only when a<1/(NInN), we have A<l and
tant for smalls, but it may become significant whenbe-  P[0,0, ...,I~1 so that the discussions in Secs. Ill and IV
comes larger. The following consideration serves to illustrateare valid. Also, the numerical resulé,)=0.494, (n,)
the point. Neglecting the terf®(Na), one obtains =0.062,(n3)=0.019 forN=100 anda=10* are in good

agreement with the exact resuks,)=N?a/2=1/2, (n,)
T =1/16, and(n3)=1/54. Fora=10 3, the numerical results
A=Y 521 s(ng) = 7;Na<Na. of (n,)=4.594 is slightly off the exact result ofn,)
=N?a/2=5. This indicates thaa=10"2 is not sufficiently
On the other hand, Eq(33), in the limit N« and a  small for the case oN=100, and it should better be treated

N—-1 2

<1/(NInN), gives as a case in the crossover regime.
For comparison, Fig. 1 also includes results for values of
s Ns*tla a in the intermediate regime of MIn N)<a<1/y/N. It can
(n7)= o5 be seen that the dependence ofng) in the intermediate
regime @=0.04, 0.03, 0.02, and 0.pis rather complicated.
From the Schwartz inequalitf(n?)>(n,)?, one has The transition from a “subcritical” behavior characterized by
a power law with an exponential cutoff to a “supercritical”
A>Na. behavior characterized by a power law with a bump seems to

be gradual. If one is to locate a critical valagat which the
Therefore, the neglected terms in Eg4), although not im-  competition between the two regimes balanegswould lie
portant for smalk, become significant for largeand give an  in the range 0.02a,<0.03 for the system studied. Far
additional contribution teA\. We would also like to point out =0.02, the numerical results basically follow the “supercriti-
that results of numerical simulation suggest that cal” behavior. Fora=0.03, (ng) follows a power law for
~CNaln N with C~0.5. The mean-field result &=Nais small s and starts to show “supercritical” behavior for 40
therefore inconsistent with numerical results. Therefore, nu<<s<80 but eventually goes over to the “subcritical” behav-
merical results suggest that the neglected term in(B4).  ior for s>80. Note that the results fa=0.3 are typical for
becomes important whesis large. cases witha>1/,/N.
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VI. DISCUSSIONS size effect becomes significant. When~1/(NInN), the

We have shown that finite-size effect is significant éor pmbab?'?ty P.[O'O’ e ’]J:..l_A becomes finite anq the
<1/(NIn N) in the EZ model. In this case, the system aImostprObab'“t'eS in other partitions are small and proportional to

becomes a single cluster containing all the agents. On th& Finally whena< 1/('\! InN), P[O,_O, T ,]]=1—A_%1 and.
other hand, finite-size effect is not important wHers suf- t e_theory presented in Sec. IV is val_ld. In the intermediate
ficiently large anda>1/\N. In this case, alknc) with s regime of 1/(NIn N)<a<1/\/_N, numerical r_esults showed
being the order oN are negligibly small. Thereforén,) for that thes dependence ofns) is rat_her com_pllcated. Furth_e_r
finite and smalls is mainly determined byn;) for finite r work is needed to study the detail behavior of the transition
r " “ ' ” H H

The finite-size effect plays an important role in the deter-bet"ve_en a SUbC”t'Cal behavior crlaracten.zgad E’y a power

mination of (n.) for finite s in the limit of a<1/(N In N). law with an exponential cutoff to a “supercritical” behavior

Although({ng) decays as a power law wighboth in the cases char_actenzed _by a power law with a bump. .
of a<1/(N InN) andas1/JN (in addition to an exponential Finally, the importance of the neglected term in the exact

. . s : result[Eg. (34)] was studied. Wheris small andN is large,
cutoff) within a mean field approach, the coefficients in front,[he neglected term is negligible anoL) is exactly described
of the s~%2 behavior are different. Faa>1/\/N, the coeffi- 9 gl9 S y

. . g by a power law with the exponert3 whena— 0. However,
< 2
\(/:\;ﬁincthlsisNhEgLa}:si/(t'r\:a:;N)’ the coefficient becomel“a, numerical simulations indicate that whileng)~s™2 for

We also studied the validity of the mean-field a roxima-sma”S’ () increases witts whens—N. This resuit implies
. i ) . y of PP that the neglected term becomes dominantly important when
tion. It is possible, in a self-consistent way, to show ffegt . . ) . )
X LT s s~N. The behavior in this regime deserves further investi-
the mean-field approximation is valid in the caseNof oo

. : ations.
andas1/\/N. However, fluctuation effects are important for gations
a<<1/(NInN). The direct consequence of the fluctuation ef-
fects is to change the exponent @fs) from —5/2 in the

mean-field approximation te-3 for smalls. __ This work was supported by the Grant LWTZ-1298 of the
It is interesting to discuss the intermediate regime inchinese Academy of Sciences, the Special Funds for Major
which 1/(NInN)<a<1/J/N. Whena>1/N, (ny) with s  State Basic Research Projects of ChifdSBRPC, 973
~N are negligibly small because of the exponential cutoff.projecy, the National Climbing-Up Project “Nonlinear Sci-
The analytic theory developed by D’Hulst and Roddeiss  ence,” and National Natural Science Foundation of China
valid. Whena<1/yN, the exponential cutoff ir{n;) does (the Key Important Project No. 19932020, and the General
not terminate(ns) whens~N. In other words, thosg¢n,)  Project Nos. 19974039 and 5987603We also acknowl-
with r~N also play an important role in the determination of edge the support of the China-Canada University Industry
(ng) for small's. Mathematically speaking, the second termPartnership PrograltiCCUIPP-NSFC No. 701420050ne
on the right-hand side of Eq12) should be replaced by of us(P.M.H. acknowledges the support from the Research
(a/N)=N_,r?(n,). Consequentlyn,) is less than the result Grants Council of the Hong Kong SAR Government through
N/2 obtained in Ref[2]. As a decreases further, the finite- Grant No. CUHK 4241/01P.
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